

Vision Systems Design
Webinar
9 September 2015

How to Choose a Machine Vision Camera for Your Application

Andrew Bodkin
Bodkin Design & Engineering, LLC
Newton, MA 02464
617-795-1968
wab@bodkindesign.com
www.bodkindesign.com

Bodkin Design and Engineering

Specializing in Imaging Systems

System-level solutions draw on our expertise in:

Optics

- Sensors
- Photonics
- Instrumentation
- Opto-Mechanics Electrical Engineering
- Software

- Mechanical Engineering
- Spectroscopy
- Physics

Machine Vision

Measure optical phenomena

- spatial location (size)
- reflectivity/absorption
 - color-imaging / spectroscopy
- stop motion / time studies

- phase (transparent imaging)
- self emission (temperature)
- polarization (stress)

Front End

- Common to all these systems are cameras
 - lenses
 - focal length, f/number, spatial resolution, depth of focus, telecentricity, uniformity
 - focal plane array
 - pitch, pixel count, color filter, read out sequence, bit depth, well depth, integration time, dynamic range
- This webinar will explain how to select the components for the camera to match your application

Pinhole Imager

The fundamental process of imaging

- A ray of light passes through a pinhole and makes a spot
- The sum of the spots is an image
- All other systems are simply improvements on this fundamental imager

Definitions

- Magnification=i/o,
- Pixel field-of-view PFOV (radians)

$$PFOV = \frac{p}{i} = \frac{p}{f}$$
 p=pixel pitch

Field-of-view FOV (radians)

$$FOV = PFOV \cdot (\# pixels)$$
 horizontal and vertical

Footprint (mm)

$$Footprint = FPA dim \cdot mag = FOV \cdot o$$

Pixel footprint (mm)

$$= p \cdot mag = PFOV \cdot o$$

Layout of a Thin Lens

- 1. Light travels left to right
- 2. Rays leave the object and pass through the lens
- 3. Rays parallel to the optic axis pass through the back focal point
- 4. Rays go straight through the center of the lens
- 5. Rays through the front focal point exit parallel to the optic axis

First Order Optical Parameters

Thin lens formula

f=focal length o=object distance i= image distance

$$\frac{1}{f} = \frac{1}{i} + \frac{1}{o}$$

How to focus the image

Magnification

$$Mag = \frac{i}{o}$$

How big is the image

Image Intensity

F-number / Numerical Aperture

f/=f-number NA=Numerical Aperture ap=aperture diameter ø=edge ray angle at the image

$$f/=\frac{1}{2NA}=\frac{1}{2\sin(\emptyset)}$$

$$f/\cong \frac{f}{ap}$$

Depth of Field

Image blur spot diameter increases with defocus

Is a continuum and is increased by reducing the f-cone

Blur spot diameter from optical aberrations

Focal Plane Array

- 2D and linear arrays
- Color or Monochrome, Bayer filter
- Pixel pitch
- Format
- Pixel count, total count, horizontal x vertical
- Frame rate
- Bit depth
- Progressive Scan (rolling shutter)/framing (global shutter)

Format

- Aspect Ratio 4:3, 16:9
- 1" sensor has 16 mm diagonal (1" OD vidicon tube)

Sensor Diagonal		Width	Height	Representative		
Format	Format (mm)		(mm)	Sensor		
1/3"	6	4.8	3.6	Micron MT9M131		
1/2"	8	6.4	4.8	Kodak KAF0400		
1/1.8"	8.93	7.18	5.32	Sony ICX452		
2/3"	11	8.8	6.6	Sony ICX285		
1"	16	12.8	9.6	Kodak KAl2000		
4/3"	21.6	17.3	13	Kodak KAl4000		

Arcane units. Simply multiply pitch by pixel count H x V Diagonal is used to select lens $Diag = \sqrt{H^2 + V^2}$

Pixel Pitch

- Common pixel pitch
 - 7.4, 5.5, 5.6, 6.5, 4.7, 3.27, 2.2, 1.6, 1.25 um
 - Small pixels <2.5um are sub blur spot, do not increase resolution

b=blur radius λ=wavelength

$$b = 1.22 \cdot \lambda \cdot f /$$

1.22*.5um*4=2.44um

Pixel limited resolution

R=resolution (lp/mm) p=pixel pitch (mm)

$$R = \frac{1}{2 \cdot p}$$

- Rated in H x V
 - 1280 x 1024=1.3 MP

Bayer Filter

- Monochrome FPA, resolution is 2x pixel pitch
- Color FPA, Bayer filter reduces resolution by half, 4X pixel pitch

Eye spectral sensitivity Native silicon sensitivity Solar illumination

Accuracy

Pixel Limited Resolution

Distance = $L \pm p$

Optics Limited Resolution

Distance = $L \pm b$

 $b = 1.22 \cdot \lambda \cdot f /$

Diffraction limited blur spot

Optics Resolution

Image line scan

USAF 1951 Test Chart

System MTF

Nyquist cut-off

$$R = \frac{1}{2 \cdot p}$$

Diff Ltd MTF
Array MTF

Total MTF

Lens Specification

- Mounting flange/flange focal distance
 - C-mount /17.526 mm
 - CS-mount /12.5 mm
 - SLR lenses proprietary
 - F-mount, Canon, etc. ~ 46.5mm
- Fixed focus/varifocal/zoom
- Field diagonal

Example

- Maximize magnification
- Lens outer diameter <75mm
- Working distance >150mm
- Fill f/4 cold stop

Object distance	e: 200 mm					
Magnification	FI (mm)	Aperture (mm)	f/	Image distance (mm)	Pixel footprint	Hor. field size
0.75	85.7	37.8	2.27	150	0.139	12.8
1	100	50.4	1.98	200	0.104	9.6
2	133.3	100.8	1.32	400	0.052	4.8
3	150.0	151.2	0.99	600	0.035	3.2

Lens Selection

Mega-P	ixel	Mega-	Pixel lenses are s	uitable for	r sensors with a resolution of	720p or hore		
Imager Size [?]	Mount [?]	Image	Focal Length [?]	F No. [?]	Description	Model # [?]	Iris [?]	Specs
1/1.8"		unt B		F/1.5		M118VG413IR	DC Auto	
	C-Mount		4-13mm		5 Mega-Pixel Near IR Corrected Lens (1/1.8" 4-13mm F/1.5)	M118VM413IR	Manual	
						M118VP413IR	Stepper Motor	
		ount out				M13VG288IR	DC Auto	>
			2.8-8mm	F/1.2	DOUBLE VARI-FOCAL The Single Choice	M13VM288IR	Manual	
1/2.7"	CS-Mount				Double Vari-Focal Series 3 Mega-Pixel IR-corrected Lens (1/2.7" 2.8-8mm F/1.2)	M13VP288IR	Stepper Motor	***
			8-50mm		(1/2.7" 8-50mm F/1.6)	M13VG850IR	DC Auto	
						M13VP850IR	Stepper Motor	
1/2.7"	CS-Mount		2.8-12mm	F/1.4	3 Mega-Pixel IR-corrected lens (1/2.7" 2.8-12mm F/1.4)	M13VG2812IR	DC Auto	

Tamron varifocal lenses

Fixed Focus Lenses

						CS M	ount					
Model No.	MTF	Focal Length	Aperture	Back Focal Length	Sensor	Field of View		M.O.D.	Dimensions			
7	Th	(mm)	(F-Stop)			D	Н	V	m	D	L	
30S1520L	MTF	1.5	2.0	4.57	1/3"	195	195	195	0.1	30	16.0)
30SK0220L	MTF	2.0	2.0	5.6	2/3"	195	195	195	0.08	30	18.5)
30M028020F	N/A	2.8	2.0	6.38	1/3"	125	100	74	0.2	30	11.5	5
30SH0416L	MTF	4.0	1.6	7.21	1/2"	146	96	68	0.2	30	11.1	L
30SH0616L	MTF	6.0	1.6	8.73	1/2"	88	65	46	0.2	30	15.9)
30S0618N-IR	MTF	6.0	1.8	8.75	1/3"	60	48	34.5	0.2	30	14.	_
30S0818L	MTF	8.0	1.8	5.4	1/3"	45	35.5	26	0.2	30	14.	
30SH0816L	MTF	8.0	1.6	5.4	1/2"	62	48	35	0.2	30	14.	
30SJ0818LD	MTF	8.0	1.8	9.55	1/1.8"	62	51	39.5	0.2	30	18.	Ļ
30SH1216L	MTF	12.0	1.6	6.54	1/2"	38.6	31	23	0.2	30	14.	L

Videology

TS 60.00 DEG

Focus

Manual

Manual

Manual

Manual

Fixed Manual

Fixed

Fixed

Fixed

Weight

31.0

18.0

25.0

55.0

29.4

g

Megapixel Lenses

For Megapixel Camera

Screw-in mounting commonly used in

Metal mounting with high accuracy and

For 5 Megapixel Camera

Metal Mount

Feature Indications

Fixed Focal High performance single focal lens for the best image quality

Manual Iris Manually-operated iris

Wide Aperture Rate Lens with the wide aperture rate,

Using an extension tube longer than 5mm the M.O.D. will increase to 0.5m

Megapixel Supporting Lens

We have realized a high resolution, compact, and lightweight lens supporting to megapixel by thoroughly reducing aberrations based on design technology cultivated from broadcast TV lenses. The chart shown at the right compares megapixel supporting lens and the MTF of an ordinary CCTV

As the number of TV lines increases, the disparity in MTF becomes bigger.

		HF12.5SA-1	HF16SA-1	HF25SA-1	HF35SA-1	HF50SA-1	HF75SA-1
Focal Length (mm)		12.5	16	25	35	50	75
Iris Range		F1.4~F22	F1.4~F22	F1.4~F22	F1.4~F22	F1.8~F22	F1.8~F22
Operation	Focus	Manual	Manual	Manual	Manual	Manual	Manual
Operation	Iris	Manual	Manual	Manual	Manual	Manual	Manual
	2/3"	38°47' x 29°35'	30°45' x 23°18'	19°58' x 15°02'	14°20' x 10°46'	10°03' x 7°33'	6°43' × 5°02'
Angle Of View	1/2"	28°43' x 21°44'	22°37' x 17°04'	14°35' x 10°58'	10°27' x 7°51'	7°19' x 5°30'	4°53' × 3°40'
(H×V)	1/3"	21°44' x 16°23'	17°04' x 12°50'	10°58' x 8°14'	7°51' x 5°53'	5°30' × 4°07'	3°40' x 2°45'
Focusing Range (From Front Of The Ler	ny (m)	⇔ ~ 0.1	⇔ ~ 0.1	⇔∼ 0.1	⇔∼0 .2	⇔ ~ 0.4	⇔ ~ 0.9
Object Dimensions	2/3"	83 × 62	69 × 51	44 × 33	50 × 38	70 × 52	101 x 76
at M.O.D.	1/2"	60 x 45	50 × 37	32 x 24	37 × 27	51 × 38	74 × 55
(H×V) (mm)	1/3"	45 x 34	37 × 28	24 x 18	27 x 21	38 × 28	55 x 41
Back Focal Distance (in	n airj (mm)	16.07	17.99	22.32	14.99	17.81	24.43
Exit Pupil Position (From Image Plane) (m	im)	-101	-172	-140	-37	-49	-52
Filter Thread (mm)		M49 × 0.75	M49 × 0.75	M49 × 0.75	M49 x 0.75	M49 × 0.75	M49 x 0.75
Mount		С	С	С	С	С	C
Mass (g)		295	285	315	185	240	305
Remarks		With Metal Mount					

FPA selector

Select	Product	Data Sheet	Description	Туре	Megapixels	Frame Rate	Optical	Shutter Type	Pixel Size (µm)	Color
	Product	Data Sileet		туре	megapixeis	(fps)	Format	Shutter Type	Pixei Size (µiii)	Color
⊕ □				⊕ ☑		₽		= T		⊕ ☑
	0									
								Global Shutter		RGB
	■ AR0136AT		1.2 MP 1/3" CMOS Image Sensor	CMOS	1.2	45	1/3 inch	Electronic Rolling	3.75 x 3.75	RGB
	⊕ AR0140AT		1.0 MP 1/4" CMOS Image Sensor	CMOS	1	60	1/4 inch	Electronic Rolling	3.0 × 3.0	RGB
	⊕ AR0140CS		1.0 MP 1/4" CMOS Image Sensor	CMOS	1	60	1/4 inch	Electronic Rolling	3.0 × 3.0	RGB
	⊕ AR0141CS	Z	1.0 MP 1/4" CMOS Image Sensor	CMOS	1	60	1/4 inch	Electronic Rolling	3.0 × 3.0	Mono RGB
	⊞ AR0230AT		2 MP 1/3" CMOS Image Sensor	CMOS	2.1	30	1/2.7 inch	Electronic Rolling and Global Reset Release	3.0 x 3.0	Mono RGB
	⊕ AR0230CS		2 MP 1/3" CMOS Image Sensor	CMOS	2.1	60	1/2.7 inch	Electronic Rolling and Global Reset Release	3.0 x 3.0	RGB
	⊕ AR0261		2 MP 1/6" CMOS Image Sensor	CMOS	2.1	60	1/6 inch	Electronic Rolling	1.4 × 1.4	RGB
	⊞ AR0330	Z	3 MP 1/3" CMOS Image Sensor	CMOS	3.5	60	1/3 inch	Electronic Rolling	2.2 x 2.2	RGB
	⊕ AR0331		3 MP 1/3" CMOS Image Sensor	CMOS	3.1	60	1/3 inch	Electronic Rolling	2.2 × 2.2	RGB
	⊕ AR0542	Z	5 MP 1/4" CMOS Image Sensor	CMOS	5	15	1/4 Inch	Electronic Rolling	1.4 x 1.4	RGB
	⊕ AR0543		5 MP 1/4" CMOS Image Sensor	CMOS	5	15	1/4 inch	Electronic Rolling	1.4 × 1.4	RGB
	⊕ AR0833	Z	8 MP 1/3" CMOS Image Sensor	CMOS	8	30	1/3.2 inch	Electronic Rolling	1.4 x 1.4	RGB
	⊕ AR0835	B	8 MP 1/3" CMOS Image Sensor	CMOS	8	42	1/3.2 inch	Electronic Rolling	1.4 x 1.4	RGB
	⊕ AR1011		10 MP 1" CMOS Image Sensor	CMOS	10.8	60	1 inch	Electronic Rolling	3.4 x 3.4	RGB
	⊕ AR1335		13 MP 1/3" CMOS Image Sensor	CMOS	13	30	1/3.2 inch	Electronic Rolling	1.1 × 1.1	RGB
	⊕ ARX342CS		VGA 1/4" CMOS Image Sensor	CMOS	VGA	60	1/4 inch	Electronic Rolling	5.6 x 5.6	RGB

ON-semiconductor

Telecentric Lens

Defect of focus can cause magnification changes. Not good for metrology. Objects in front of target look bigger than they are.

Telecentric system all the cones are parallel. (chief rays are parallel to the optic axis). no magnification change with defocus.

Conventional

Telecentric

Scheimpflug Imaging

Conventional lens the object plane is perpendicular to the camera lens. Problematic for off-axis imaging

Lens tilted to the Scheimpflug condition, the image plane lays down. Useful for all object s to be in focus

Polarization Imaging

Visualize stress birefringence in transparent materials

Schlieren Photography

Useful for imaging gas flows, glass striations, transparent objects

Background-Oriented Schlieren

Thermal Imaging

sun 5777K

incandescent bulb 2700K

campfire 1100K

human 310K

Thermal Imaging Applications

Thermal imaging is low cost and common

Bad contacts get hot Relative temperature, emissivity unknown

Electronic inspection

Insulation problem

Tumors are hot

Spectral Imaging

Spectral emission of a flame

More than RGB

Line scan

spectral

imaging

camera

measures

moisture

Precision measurement of spectral reflectance or absorbance (or self emission)

- Determine chemical composition
 - QC of colors
 - make-up
 - paints/pigments
 - moisture content
 - coating density and distribution
 - combustion mix ratio
 - determine emissivity
 - crop stress
 - melanoma

Spectral Imaging

Color video camera

VNIR-40 HPA camera

Questions

Andrew Bodkin
Bodkin Design & Engineering, LLC
Newton, MA 02464
617-795-1968
wab@bodkindesign.com
www.bodkindesign.com

Andrew Bodkin has been a camera designer for the last 27 years. Designing camera systems for the military, biological, industrial and commercial users. He has built image intensified cameras, high speed cameras, polarization sensitive cameras, spectral analysis cameras, infrared cameras, moisture cameras, airborne cameras and worked on cameras for missile guidance and reconessence. He has worked for Textron, Loral, Ion Optics, and for the last 15 years has run his own engineering services business, building and designing cameras. He has over 7 patents for the equipment he has invented. The company now produces a proprietary design of high speed hyperspectral cameras that are used for chemical analysis for biological detection and quality control, as well as precision thermal analysis.

